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1
SECURE MEMORY ACCESS CONTROLLER

1. TECHNICAL FIELD

This disclosure relates generally to memory controllers.
More particularly, it relates to secure memory access unit that
protects and secures data stored in memory.

2. BACKGROUND

Data may be stored in different kinds of memories such as
Static Random Access Memory (SRAM), Random Access
Memory (RAM), and Dynamic random-access memory
(DRAM). The stored data may be at risk from potential
attack. For example, in a System-on-a-chip (SOC) unit, or
other embedded systems, the memory external to SOC may
be attacked by potential hackers. At the same time, more and
more data is stored in DRAM external to SOC controllers,
especially for markets such as Point-of-Sale (POS), auto-
matic teller machine (ATM), banking and self-automated
payment systems. As smartphones and mobile payments sys-
tems gains traction, the data stored in mobile devices also
becomes hacking targets.

BRIEF DESCRIPTION OF THE DRAWINGS

The system may be better understood with reference to the
following drawings and description. In the figures, like refer-
ence numerals designate corresponding parts throughout the
different views.

FIG. 1 is a block diagram an exemplary memory access
circuit and distributed mapping of data to memory.

FIG. 2 is a block diagram of an exemplary hardware archi-
tecture of a secure memory access unit (SMAU).

FIG. 3 is a block diagram of an exemplary read hit scenario
of the SMAU.

FIG. 4 is a block diagram of an exemplary read miss sce-
nario the SMAU’s operations for read misses to on-chip
SRAM cache.

FIG. 5is ablock diagram ofthe SMAU’s exemplary opera-
tions for writes.

FIG. 6 is a block diagram of an exemplary Byte-Write
Misses to DRAM Cache.

FIG. 7 is a block diagram of an exemplary architecture
model of the scrambler.

FIG. 8 is a block diagram that demonstrates exemplary
permutation operations of the scrambler of FIG. 7.

FIG. 9 is a block diagram of an exemplary embodiment of
the data shuffle network that is under the control by the
address scrambler.

FIG. 10 is a flow chart of an exemplary configuration
method at an initial power-on reset of the SMAU.

DETAILED DESCRIPTION

The description below relates to a memory access circuit
and corresponding method and system. A secured memory
protects stored data in different systems and applications. The
memory access circuit can include a crypto block in commu-
nication with a memory that encrypts data on a block basis.
The memory access circuit can include a fault injection block
configured to inject faults to the memory. The memory access
circuit can further include a data scrambler configured to
scramble data in the memory by shuftling data bits within a
data block in a plurality of rounds and mash the shuffled data
bits with random data.

w

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is a block diagram of an exemplary memory access
circuit and distributed mapping of data to a memory. In one
embodiment, the memory access circuit is a SMAU 160 that
can reside or sit between a logical memory and a physical
memory. The logical memory may be a system address map
110 and the physical memory may be an external DRAM
memory 180. The SMAU 160 protects secure data stored in
the external DRAM memory 180 by a number of techniques.

The memory space in the logical memory space 110 may
be programmed to include two regions, designated as a non-
secure region 114 and a secure region 116. The SMAU 160
accepts both secure and non-secure accesses while distin-
guishing between secure and non-secure accesses accord-
ingly. The SMAU 160 allows secure accesses to the secure
region 116 and rejects non-secure accesses to the secure
region 116.

A plurality of memory windows may be declared to the
SMAU 160 as secure vault windows. In this illustration, four
secure vault windows 116a, 1165, 116¢, and 116d are dis-
closed. However, it is possible to declare more secure vault
windows if necessary based on the particular application
requirement. Data in these secure vault windows are
encrypted and digitally signed by the SMAU 160 before they
are stored in the DRAM. The SMAU 160 decrypts and
authenticates data in the secure vaults when they are read by
the processor 120.

Additionally or alternatively, accesses to secure vaults may
be further routed via plain text windows 118a, 1185, 118c¢,
and 1184, in FIG. 1. The plain text windows 1184, 1185,
118¢, and 1184 are aliases to the secure vaults of cipher texts
in the secure vault windows 1164, 1165, 116¢, and 1164.
Thus, direct accesses to cipher text in the secure vault win-
dows 116a, 1165, 116¢, and 1164 can be optionally blocked.

Cipher text windows can be declared in the secure memory
region 116. However, the cipher text windows can also be
assigned within the non-secure region 114. The exemplified
design is flexible enough to allow cipher text windows to be
anywhere if necessary.

Accordingly, there are different types of data stored in the
physical DRAM memory 180 as illustrated in FIG. 1. For
example, there are may be four types of data including: plain
data in non-secure area, plain data in secure area, encrypted
secure-vault data, and encrypted secure-vault data with digi-
tal signatures. The secure vault data is digitally signed if
digital signing is turned on.

The SMAU 160 further includes a data distribution module
configured to scatter and distribute the four types of data to
the physical memory on a block basis.

For example, each block may include 32-byte data. The
spatial dispersion of the different types of data increases the
degree of complexity for potential attacks by making static
analysis of secure data difficult. The data dispersion can be
achieved by an effective address-scrambling method that
maps logic memory addresses (viewed by the programmers)
to physical memory space in a random manner. More details
about the address-scrambling will be disclosed later.

Thus, secure and non-secure mode software can execute
under partitioned address space in the logical memory while
the secure and non-secure data are randomly intermixed in the
physical memory locations. Additionally, secure vault data
may be additionally scrambled with purposely injected faults,
which are recovered at read time. The SMAU 160 adopts all
the above techniques so that the SMAU 160 writes a stream of
data to the physical memory in arbitrary order. Thus, the
SMAN 160 prevents attackers from establishing correlations
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between secure data in the logical memory and their physical
memory locations by observing time-resolved memory
traces.

In FIG. 1, the SMAU 160 can also handle accesses to an
on-chip SRAM block 170. The size of the on-chip SRAM
block may vary based on applications. For example, the on-
chip SRAM block 170 may have a 256 KB size. Similar to the
external DRAM memory 180, the on-chip SRAM block 170
can be partitioned to regions to store secure and non-secure
data as well.

FIG. 2 is a block diagram of an exemplary hardware archi-
tecture of the SMAU 200. The SMAU 200 can reside between
a processor 210 and a memory controller 290. The SMAU
200 can communicate with the processor 210 through an
advanced extensible interface (AXI) 212 and communicates
with the memory controller 290 through an AXI 292. The
SMAU 200 includes a configuration block CFG 220 that
includes control, status and statistics registers.

The SMAU 200 includes a controller unit 226 having a
RAM controller and an Address Translation Unit (ATU). The
controller unit 226 is configured to: classify accesses to non-
secure area, secure area, or secure vaults; reject and log
request with violations; handle accesses to the on-chip
SRAM 240; and manage a separate cache for DRAM data
(open and secure data indiscriminately). The ATU is config-
ured to map plain text windows to cipher text windows in F1G.

The SMAU 200 includes an on-chip SRAM and DRAM
cache 240. In one embodiment, the on-chip SRAM and
DRAM cache 240 may be a 256 KB byte-addressable on-chip
SRAM and 32 KB byte-addressable DRAM cache. The on-
chip SRAM and DRAM cache 240 includes a plurality of
cache blocks 242, 244, 246, and 248. The cache blocks may
have 18432*32 byte. The on-chip SRAM and DRAM cache
240 may be a low-power RAM with 2-cycle access time and
8-row blocks that can be independently powered down with a
0.3 um?, 25 uW/MHz dynamic power, and 1270 uW leakage
power. In one example, the DRAM cache is 2-way set-asso-
ciative with 32 B cache lines.

The SMAU 200 further includes a victim cache 250. For
example, the victim cache 250 may be an 8-entry victim
cache; each entry is of 32 B.

The SMAU further includes a crypto block 260a between
the victim cache 250 and the scrambler block 270a. The
crypto block 260a includes a crypto that works on-the-fly, an
error injection block, and a memory authentication code
(MAC) block. The crypto block 260aq is configured to encrypt
datato the secure vault, calculate digital signatures, and Inject
faults. The MAC block is configured to implement a set of
cryptographic hash functions such as SHA256 to effectively
generate memory authentication code.

The scrambler blocks 2704 includes a data scrambler and
an address scrambler to further manipulate the data and
address. For example, the data scrambler in the scrambler
blocks 270a shuffles and mashes data with random values to
form elusive articles. Similarly, on data return path (from
memory to system), the data scrambler blocks 2706 includes
a data scrambler that implements an inverse function that
de-scrambles data back to its original form.

The address scrambler in the scrambler blocks 270a is
configured to distribute the scrambled data across DRAM
locations. For example, the scrambled data in a data block
may be distributed to any physical memory address of the
DRAM. The address scrambler in the scrambler blocks 2705
is configured to recollect the scrambled data across DRAM
locations back to its original form.
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The crypto block 2605 implements a reverse function to
remove the injected error by the crypto block 260a and
decrypts the encrypted data. The crypto block, the MAC
block and the error injection block in the crypto block 260a
may be arranged in different orders as long as the crypto block
2605 has the same arrangement as the in the crypto block
2605.

FIG. 3 is a block diagram of an exemplary read hit scenario
of'the SMAU’s operations for reads to on-chip SRAM cache
240. The controller unit 226 first receives a read request from
the read queue (RQ) 224. Then the controller unit 226 checks
the on-chip SRAM cache 240 to determine if the data is
available in the on-chip SRAM cache 240 or not. If the data is
available in the on-chip SRAM cache 240, the data is returned
to the response (RESP) 222. This may also be referred as a
read-hit to the on-chip RAM cache 240. Distinction between
accesses to on-chip SRAM and DRAM may be made by their
designated address spaces.

FIG. 4 is a block diagram of an exemplary read miss sce-
nario SMAU’s operations for read misses to on-chip SRAM
cache 240. Upon a miss to the on-chip SRAM cache 240, a
read request is launched to the memory controller 290. The
data and address scrambler 2705 ensures that the mapping
from the logic address space to the physical DRAM locations
is done properly. When data is returned by the memory con-
troller 290, the data and address scrambler 2705 applies its
inverse function to recover the data to proper form.

Subsequently, there are two cases depending on whether
the data is in the secure vault. If the data is in the secure vault
according to the designated address, the data is processed by
the crypto block 26054, i.e. the data is recovered from faults
that were purposely injected on creation (data writes), fol-
lowed by decryption and authentication (if turned on). If the
authentication fails, the error is logged and poison data is
returned so that a potential attacker could not read the desired
data in the secure vault. If the data is not in the secure vault,
the plain data is returned directly to RESP 222.

FIG. 5 is a block diagram of an exemplary SMAU’s opera-
tions for writes. There are four scenarios: writes to on-chip
SRAM 240, cache write-hits to DRAM locations, cache
write-miss to DRAM locations with free cache entry, and
cache write-miss to DRAM locations without free cache
entry. For writes to on-chip SRAM 240, they are handled
locally as regular memory writes. For write-hits to DRAM
locations, write hits to DRAM cache are performed locally
within SMAU.

For write-miss to DRAM locations with free cache entry,
write misses are handled such that—If the write granularity is
N-byte (or a full cache line size, said 32 bytes in this
example), a free entry in the DRAM cache is allocated. The
writes are performed to the DRAM cache. There is no read-
modify-write cycle incurred for N-byte writes. This is due to
that DRAM data scrambling is on N-byte granularity. As a
result, N-byte writes represent effective overwriting cases. It
is thus encouraged to use N-byte data accesses. N may be 32
or any other predetermined integer number.

When a free cache entry does not exist, an existing cache
line is evicted to the external DRAM memory to make room
for the new data. The evicted line is first pushed into the
victim cache 250. Data lines in the victim cache 250 are
drained back to DRAM through the memory controller 290.
The data lines can be drained in the background, indepen-
dently to other operations. In FIG. 5, data lines fall in secure
vault areas go through the crypto block 260a. In other words,
the evicted data are within one of the programmed plain text
windows. If the evicted data line is not for secure vault, the
cryptography process in the crypto block 260q is bypassed.
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The data and address scrambler 270a performs its data and
address maneuver functions before data is pushed to the
memory controller 290 through the write queue (WQ) 288
and the AXI 292. When the MAC block is turned on, two
writes will be launched: one is for the data, and the other is for
the message authentication code.

FIG. 6 is a block diagram of exemplary Byte-Write Misses
to DRAM Cache, which may be referred as Word-Write
Misses to DRAM Cache. Complex cases of Byte-Write
Misses or Word-Write Misses can occur under partial-line
updates to secure vault data.

On a miss, a read-modify-write cycle can occur. The
memory controller 290 can load the missed (secure vault)
data line from DDR RAM through data interfaces. The
scrambler 270b can descramble loaded data. The
descrambled data is decrypted and authenticated by the
crypto block 2605. The decrypted and authenticated data line
is merged with the partial data writes and the final plain text
line is stored in the DRAM cache.

The operation may cause a cache line to be replaced, e.g.,
due to lack of a free entry for the target line loaded. The
evicted cache line is pushed to the victim cache 250, and is
written back to DRAM. The cache line can be written back in
background, independently to other operations. If the evicted
data line is within one of the programmed plain text windows,
the crypto block 260a encrypts the evicted data line and
calculates a digital signature. The memory controller 290
writes the encrypted data and associated signature to the
DRAM or other external memories.

If the partial updates are not to secure vault data, they are
sent to the memory controller 290 directly under cache
misses. It does not incur the same read-modify-write cycle
described above.

To protect secure vault data, the crypto blocks 260a and
2605 may use Advanced Encryption Standard (AES) cipher.
The AES cipher may operate on 128 b (16 B) data blocks. The
key length is either 128 b, 192 b or 256 b, which is indepen-
dently and randomly selected by the SMAU hardware ona per
data block basis. For example, the block size may be 32-byte.
A 32-byte data block incurs two independent 16-byte cipher
operations.

Digital signatures (Secure Hash) are calculated upon
encrypted data. On data return path from the memory con-
troller 290 to the processor 210 during processor reads, the
MAC in the crypto block 260a can be computed in parallel
with data decryption operation. This design speeds up the
data return path, which can improve system performance.

For example, SHA-256 may be deployed in one embodi-
ment. Inputs to SHA-256 is a 512 b block, which can include
the 32 B data block, secret data picked by SMAU and padding
bytes. Output of the SHA-256 is a 256 b signature. The
SHA256 operation, due to its heavy operations, may become
a performance bottleneck, especially on the data return path.
As a result, Cygnus is configured to allow SMAU authenti-
cation turned on and oft by the users or developers. SHA-256/
128, which is a truncated version of SHA-256 selects the
leftmost 128 b, may be used as well. The SHA-256/128 leaves
128 b for additional cipher methods.

For secure vault data, the error injection block in the crypto
block 260a may be enabled to inject faults to the final
encrypted data and Hash-based Message Authentication
Code (HMAC) signature before they are stored to the external
memory.

First, a small and finite number of hash functions H,,,, are
defined. Second, the hash functions take inputs the data block
address and output the bits to be flipped.
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The final data output is CipherText "H°,,,
(Address) " . .. "H*,, (Address). When the purposely cor-
rupted data is fetched back from the DRAM, the error injec-
tion block in the crypto block 2605 remove the injected errors
by the same procedure before the data is decrypted and
authenticated.

The scrambler is configured to maneuver data and address
to create further randomness. FIG. 7 is a block diagram of an
exemplary architecture model of the scrambler 300. Inputs to
the scrambler 300 include 64 b input data Data[63:0], 8 b data
enables BE[7:0], and a memory line address Addr[31:5]. The
data scrambler 310 is controlled by the address scrambler
320, which calculates a set of mash values 330 and control
signals 340. The mash values 330 are mangled with the input
data Data[63:0] and the control signals 340 causes shuffling
of data.

The data scrambler 310 is configured such that a symmetric
inverse function can restore the shuffled data back to its
original form. This also allows recovery of scrambled data on
data return path from the memory.

Address scrambling is a process that maps the logical
memory address space from the programmers’ view to physi-
cal memory locations in a random and unpredictable manner.

In one embodiment of the SMAU, the following approach
is taken. A general DRAM device configuration is assumed
that the device may contain 8 internal banks, each with 8192
b memory page. In other words, internal banks may keep a
8192 b or 1 KB memory page open for optimized RAM
performance. Next, a memory row “block” of 8x8192 b (or 8
KB) may be logically defined across the 8 internal banks.
Subsequently, the example design treats a 32 b address in the
following manner:

addr[4:0]—Byte address, which is not used in the address

scrambling logic.

addr[9:5]—32 B line address within an (open) 8192 b

memory page.

addr[12:10]—bank address.

addr[s-1:13]—the “memory block™ address within a

memory segment of 2(s-13)*8 KB.

addr[31:s]—the base address of a defined memory seg-

ment.

Once the 32 b address is defined, the following method is
implemented in the scrambler 300.

Thetotal DRAM space of M bytes is divided into m regions
or segments. Memory segments do not need to be of the same
size. By a general description, a memory segment of 2 s bytes
is considered to contains 2 dx8 KB, where d=(s—13).

For an address A[31:0] that falls within the interested seg-
ment above, location of the 32 B datum within a 8192 b
memory page is calculated by treating the line address addr
[9:5] as a polynomial LA(X). A degree-5 generator polyno-
mial GO(X) is used by SMAU to produce:

LineAddr=F([LA(X)x/+Rnd0(X)])mod GO(X)

This permutation operation causes 32x32 B consecutive
datum, in the sense of 32 linear 32 B datum as perceived by
software in the address space, to be distributed within an 8192
b memory page.

After the above operation, the block addr[s-1:13] is simi-
larly considered as a polynomial BA(X), a (s—13)-degree
generator polynomial G1(X) is selected by SMAU such that:

BIKAddr(X)=F([BA(X)Xn+Rnd (X)])mod G1(X)—(1)

BlkAddr(X) will be address within the target segment for
the 8 KB block.
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The configurable parameters (in fact hidden from the
users) include:

The general function F that alters the polynomial inputs.

The multiplier exponent n of the Xn term applied to the

address polynomial Addr(X).

The random constant Rnd(X) that is randomly picked by

the SMAU at a power-on initialization.

The generator polynomial G(X).

FIG. 8 is a block diagram that demonstrates exemplary
permutation operations of the scrambler 300 of FIG. 7. For a
64 MB segment, starting with the (logic) linear address per-
ceived by the software, the line and block addresses within the
memory page and the memory segment of address 350 are
computed. The permutation operations include 8 KB
Memory Block permutation 360 and 1 KB memory page
permutation 362. The 8 KB Memory Block permutation 360
permutes memory block addresses of Block[25:13] to Block"
[25:13]. The 1 KB memory page permutation 362 permutes
line address of Line[9:5] to Line"[9:5]. The result address 370
shows where the 32 B line will reside within the 64 MB
segment, and the locations within the memory page of an
active internal memory bank.

In the diagram, a similar logic may be applied to mix data
blocks among segments by inter-segment permutation 364.

To create further deception to the potential attackers, all
data of all types stored in the memory may be scrambled. The
data scrambler deploys simpler bit-manipulation schemes
than cryptographic methods. The data scrambler is deployed
for both processor-to-memory (for memory writes) and
memory-to-processor (for memory reads) paths. In one
embodiment of the scrambler, the scrambler handles 64-bit
data per cycle. The core of the data scrambler is a data shuffle
network that shuffles the input data with random mash data.
There are many ways to design the data shuffle network.

FIG. 9 is a block diagram of an exemplary data shuffle
network that is under the control by the address scrambler. In
this embodiment, the data shuffle network 400 produces
deceptive data, such as on a per block basis, e.g., 64 b. The
implemented design may be extended to handle 128 b block
if it does not violate timing. The mash values and the control
signals 418, 428, and 438 to the data shuffle network 400
change on a block-to-block basis. Nevertheless, the data
scrambler 400 is designed with a symmetric scheme that its
inverse function guarantees proper restoration of the original
data for data return path (from memory to processor on
reads).

For partial-line updates, it has no impact to the perfor-
mance because the byte-enable signals are shuffled in the
same consistent way as the data. Writes to DRAM are con-
trolled by the byte-enables, and hence, there is no perfor-
mance impact.

The data shuffle network 400 adopts a simple effective
scheme as a 2°x2> network. The data shuffle network 400
includes a plurality of 2x2 switches 410-413, 420-423, and
430-433, which support exchange function. The switches
410-413 are controlled by mash values and the control signals
418. The switches 420-423 are controlled by mash values and
the control signals 428. The switches 430-433 are controlled
by mash values and the control signals 438. Accordingly, the
data input in0-in7 are shuffled three times by the data shuffle
network 400 and then re transformed to data output out0-
out7. The data shuffle network 400 is further augmented with
support for data mashing.

Data input in0-in7 to the data shuffle network 400 may be
wired (as if bit-level permutation is hardwired in design) such
that further distortion is created. For example, the byte inputs
to the following network, given 64 b data, can be wired to be:
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in0={d13, d24, d53, do, d34, d22, d11, d60},

in1={d55, d14, d23, d2, d33, d12, d21, d50},

in2={d25, 428, d63, d8, d36, d32, d41, d56},

in3={d44, ...}

FIG. 10 is a flow chart of an exemplary configuration
method 500 at an initial power-on reset of the SMAU. At
power-on reset, support for secure memory region by the
SMAU can be by default turned off. It can be left to vendor’s
secure firmware or operating system to initialize and turn on
SMAU security features.

In block 502, the method initializes the memory controller
coupled with external memory.

In block 504, the method configures the SMAU by the
secure firmware to:

Provide a set of four 256 b true random numbers. The
firmware is responsible for reading a high-entropy Ran-
dom Number Generator (RNG) block to obtain the ran-
dom numbers, which are then conditioned (e.g. by a
cryptographic method) to generate the random numbers
to be provided to SMAU.

Program the total size of the DRAM in the multiple of 16
MB.

Set the cipher text windows and their corresponding
SHA256 digest and plain text windows. The cipher text
windows and the SHA256 digest windows are pro-
grammed such that their address ranges are not over-
lapped. When the SHA256 authentication method is
turned on, each 32 B data (cipher text) chunk has an
additional 32 B overhead for SHA256 code, and 32 B
alias plain text window in the address space.

In block 506, the SMAU divides the DRAM into N seg-
ments, where the segments can be arbitrarily set to include 16
MB, 32 MB or 64 MB, or other sizes depending on an imple-
mentation. This step may be implemented internally, i.e.
opaque to the customers. After the N segments are divided,
the SMAU controller selects the generator G(x) for intermix-
ing data within 16 MB (32 MB and 64 MB) segments, respec-
tively.

In block 508, the SMAU selects an initial multiplier expo-
nent n and a random seed value Rnd(X) for the segments. In
one embodiment, the random seed value Rnd(X) is used to
calculate the block address as in equation 1. There is abso-
lutely no restriction on the locations of the plain-/cipher-text
windows, which may be readily crossing the segment bound-
aries (from the logic perspective of users with a linear con-
secutive address space), and have no impact to the SMAU
logic.

Blocks 506 and 508 can create different level of random-
ness on bootstrap occasions.

In block 510, the method turns on cipher text windows and
plain text window pairs. In one embodiment, the SMAU
initializes the following when it is turned on:

The 32 B data blocks in a cipher text window by value AES
(random value X) and its corresponding 32 B SHA256 digest
block by SHA256 (X) if authentication are turned on. Cygnus
enables an authentication method for windows indepen-
dently.

Before SMAU completes its initialization, accesses to the
secure window are rejected. The software checks the initial-
ization status before using SMAU secure access feature.

In some embodiments, the above configuration method
500 is accomplished before the memory is being accessed.
The vendor’s secure firmware can perform the DRAM
memory initialization before the control is handed off to the
operation system. If data has been written into the DRAM
memory before the SMAU configuration, the address scram-
bling logic can cause the prior written data to be inaccessible,
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in the sense that the address mapping from logic space to
DRAM has been changed by the address scrambler.

Similarly, the SMAU may further handle accesses to other
memories such as on-chip scratch RAM, and external NAND
or NOR flash. The on-chip scratch RAM and NAND/NOR
flash may include a plurality of secure regions in 4 KB steps,
which can be accessed under secure mode only. This is
enforced by the SMAU. In addition, the SMAU may integrate
the Trust Zone Memory Adapter (TZMA) function for con-
trolling accesses to on-chip RAM or NANA/NOR flash.

The methods, devices, and logic described above may be
implemented in many different ways in many different com-
binations of hardware, software or both hardware and soft-
ware. For example, all or parts of the SMAU may include
circuitry in a controller, a microprocessor, or an application
specific integrated circuit (ASIC), or may be implemented
with discrete logic or components, or a combination of other
types of analog or digital circuitry, combined on a single
integrated circuit or distributed among multiple integrated
circuits. All or part of the SMAU described above may be
implemented as instructions for execution by a processor,
controller, or other processing device and may be stored in a
tangible or non-transitory machine-readable or computer-
readable medium such as flash memory, random access
memory (RAM) or read only memory (ROM), erasable pro-
grammable read only memory (EPROM) or other machine-
readable medium such as a compact disc read only memory
(CDROM), or magnetic or optical disk. Thus, a product, such
as a computer program product, may include a storage
medium and computer readable instructions stored on the
medium, which when executed in an endpoint, computer
system, or other device, cause the device to perform opera-
tions according to any of the description above.

The processing capability of the SMAU may be distributed
among multiple system components, such as among multiple
processors and memories, optionally including multiple dis-
tributed processing systems. Parameters, databases, and other
data structures may be separately stored and managed, may
be incorporated into a single memory or database, may be
logically and physically organized in many different ways,
and may implemented in many ways, including data struc-
tures such as linked lists, hash tables, or implicit storage
mechanisms. Programs may be parts (e.g., subroutines) of a
single program, separate programs, distributed across several
memories and processors, or implemented in many different
ways, such as in a library, such as a shared library (e.g., a
dynamic link library (DLL)). The DLL, for example, may
store code that performs any of the system processing
described above. While various embodiments of the disclo-
sure have been described, it will be apparent to those of
ordinary skill in the art that many more embodiments and
implementations are possible within the scope of the disclo-
sure. Accordingly, the disclosure is not to be restricted except
in light of the attached claims and their equivalents.

What is claimed is:

1. A circuit, comprising:

cryptographic circuitry in communication with a memory,
the memory configured to store segments that include
data blocks, the cryptographic circuitry configured to
encrypt data of the data blocks on a block basis;

fault injection circuitry configured to inject faults into the
data blocks;

a data scrambler configured to generate scrambled data in
the memory by shuffling data bits within the data blocks
with multiple rounds of shuffling; and

an address scrambler configured to distribute the
scrambled data across the segments by inter-segment
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permutation and further configured to select among mul-
tiple generator polynomials as a denominator of a
modulo operation for distributing the scrambled data
from the data blocks and segments.

2. The circuit of claim 1, wherein the address scrambler is
configured to distribute the scrambled data across the seg-
ments by permutation operations that randomly map a logical
memory address to a physical memory location using at least
one of the multiple generator polynomials as the denomina-
tor, and using an alteration function configured to alter the
logical memory address in a numerator of the modulo opera-
tion.

3. The circuit of claim 1, further comprising:

a memory controller, a processor, and a system bus;

wherein:

the memory controller is configured to control accesses to

the memory and communicate data over the system bus
with the processor.
4. The circuit of claim 3, further comprising an address
translation unit in communication with the memory control-
ler, the address translation unit configured to map plain text
windows to cipher text windows in the memory.
5. The circuit of claim 3, wherein the data scrambler is
configured such that a symmetric inverse function is operable
to restore the shuffled data bits back to an original form.
6. The circuit of claim 5, wherein:
the memory comprises a dynamic random-access memory
(DRAM); and

the DRAM comprises a secured data area configured to
store secured data that is ciphered by the cryptographic
circuitry, authenticated by the memory controller, and
scrambled by the data scrambler.

7. The circuit of claim 6, wherein the fault injection block
is configured to flip bits of the secured data as determined by
a plurality of hash functions.

8. The circuit of claim 1, wherein the address scrambler is
configured to:

calculate a mash value and a control signal; and

control the data scrambler based on the mash value and the

control signal.

9. A method comprising:

injecting, with a processor, faults into data blocks in a

memory, the memory configured to store segments that
include the data blocks;

scrambling data in the data blocks to create scrambled data

by shuffling data bits within the data blocks with mul-
tiple rounds of shuffling;
selecting among multiple generator polynomials as a
denominator of a modulo operation for distributing the
scrambled data from the data blocks and segments; and

distributing, by an address scrambler of a memory access
circuit, the scrambled data across the segments by inter-
segment permutation, according to the generator poly-
nomials.

10. The method of claim 9 further comprising distributing
the scrambled data across the segments by permutation
operations that randomly map a logical memory address to a
physical memory location using at least one of the multiple
generator polynomials as the denominator, and using an alter-
ation function configured to alter the logical memory address
in a numerator of the modulo operation.

11. The method of claim 10, further comprising:

encrypting the data in the memory on a block basis;

controlling access to data in the memory with a memory
controller; and

mapping plain text windows to cipher text windows by an

address translation unit.
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12. The method of claim 11 wherein the address translation
unit communicates with the memory controller.

13. The method of claim 11, further comprising restoring
the shuffled data bits back to an original form by a data
scrambler using a symmetric inverse function.

14. The method of claim 13, further comprising ciphering,
authenticating and scrambling the data in a secured data area
having secured data.

15. The method of claim 14, further comprising flipping
bits of the secured data, the bits determined by a hash func-
tion.

16. The method of claim 9 further comprising:

calculating, by the address scrambler, a mash value and a
control signal; and

shuftling data bits based on the mash value and the control
signal.

17. A system, comprising:

a memory configured store data accessible by a processor
through a memory controller, the memory configured to
store segments that include data blocks; and

an inline memory access circuit between the memory con-
troller and a system bus coupled with the processor,

wherein the inline memory access circuit comprises:

cryptographic circuitry in communication with the
memory that encrypts data on a block basis so that a key
length for each of the data blocks is independent and
random;

fault injection circuitry configured to inject faults into the
memory;

5

10

15

20

25

12

a data scrambler configured to generate scrambled data by
shuffling data bits within the data blocks in multiple
rounds of shuffling, and mix the shuffled data with ran-
dom data; and

an address scrambler configured to distribute the
scrambled data across the segments of the memory by
inter-segment permutation that maps a logical memory
address to a physical memory location in a random man-
net,

wherein the inline memory access circuit is configured to
select among multiple generator polynomials as a
denominator of a modulo operation for distributing the
scrambled data from the data blocks and segments.

18. The system of claim 17, further comprising an address
translation unit in communication with the memory control-
ler that maps plain text windows to cipher text windows in the
memory.

19. The system of claim 17, wherein the data scrambler is
configured such that a symmetric inverse function is operable
to restore the shuffled data back to an original form; and

wherein the address scrambler is configured such that a
block address and a segment address are transformed to
a new block address and a new segment address using
different generator polynomials of different degrees.

20. The system of claim 17, wherein:

the memory comprises a dynamic random-access memory
(DRAM); and

the DRAM comprises a secured data area configured to
store secured data that is ciphered by the cryptographic
circuitry, authenticated by the memory controller, and
scrambled by the data scrambler.
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